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Abstract. In the microcrystalline regime, the electrical (impedance/dielectric) behavior of grain boundary-
controlled electroceramics is well described by the “brick-layer model” (BLM). In the nanocrystalline regime,
however, grain boundary layers can represent a significant volume fraction of the overall microstructure. Simple
boundary-layer models no longer adequately describe the electrical properties of nanocrystalline ceramics. The
present work describes the development of a pixel-based finite-difference approach to treat a “nested-cube model”
(NCM), which is used to investigate the validity of existing models for describing the electrical properties of
polycrystalline ceramics over the entire range of grain core vs. grain boundary volume fractions, from the nanocrys-
talline regime to the microcrystalline regime. The NCM is shown to agree closely with the Maxwell-Wagner effective
medium theory.
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1. Introduction

The influence of grain boundaries on the point defect
and related transport properties of ceramics has been
well documented [1, 2]. The functionality of many tech-
nologically important electroceramics relies on elec-
trical properties derived from their grain boundary-
controlled behavior. For example, the electro-active
and thermo-active responses of microcrystalline elec-
troceramics (e.g., varistors and thermistors) derive
from grain boundaries, whose properties differ signif-
icantly from those of the grain cores [3]

The reduction of grain size from the microcrys-
talline regime into the nanocrystalline regime is known
to produce significant changes in the defect and trans-
port properties of electroceramics [4]. Given the high
surface-to-volume ratio in nanoceramics, grain bound-
aries are expected to exert a greater influence over
the electrical/dielectric properties than in conventional
microcrystalline ceramics. As a result, nanoceramics
have potential for applications ranging from batteries
to fuel cells, gas separation membranes, solar cells,

etc. [5, 6]. To better understand the role of nanosized
grains on the transport and dielectric properties of elec-
troceramics, it is necessary to accurately model their
electrical/dielectric properties as a function of grain
size. Termed continuum models, since they replace the
real microstructure with a microstructure that obeys
the continuum Maxwell’s equations, existing bound-
ary layer models (see below) have several problems
insofar as describing the electrical/dielectric response
of nanoceramics is concerned. The first problem is that
in the nanograin regime, boundary layers can represent
a significant volume fraction of the overall microstruc-
ture. The second problem, as pointed out by Maier [7],
is that there can be different transport coefficients par-
allel vs. perpendicular to the grain boundaries. Finally,
space charge regions result in spatially varying electri-
cal properties, which are not accounted for in two-phase
composite models.

The modeling of conventional, microcrystalline
electroceramics is based on the pioneering work of
Bauerle [8], who developed an equivalent circuit repre-
sentation for conductive ceramics with resistive grain
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Fig. 1. Schematic representation of the brick-layer model (BLM).
The unit is separated into an outer grain boundary path in parallel
with a serial path of grain core and capping grain boundary.

boundaries. Beekmans and Heyne [9] conceived a sim-
ple boundary layer model, later labeled the “brick-layer
model” by Burggraaf and co-workers [10, 11]. Figure 1
shows the microstructural representation. The brick-
layer model (BLM) is composed of a 3D array of cu-
bic grain cores (bricks) arranged on a simple cubic
lattice separated by homogeneous grain boundary lay-
ers. The unit cell is comprised of an outer square pipe
of grain boundary material enclosing a parallelepiped
containing a grain core and two grain boundary caps.
The simplest form of the brick-layer model, which we
refer to as the series-BLM (S-BLM), neglects the con-
tribution of the outer parallel path and considers only
the serial connections of grain core and capping grain
boundary layers. The impedance response modeled by
a Bauerle type equivalent circuit consists of two paral-
lel resistor-capacitor (RC) networks in series, shown in
Fig. 2(a), where the open box represents the equivalent

Fig. 2. Equivalent circuit representations for (a) the series brick-layer
model (S-BLM), (b) the series/parallel BLM (SP-BLM), and (c) the
SP’-BLM with different electrical properties parallel vs. perpendic-
ular to the grain boundary.

circuit (RgcCgc) of the grain cores and the shaded box
represents the equivalent circuit (RgbCgb) of the grain
boundaries. The circuit parameters (Rgc, Cgc, Rgb, Cgb)
are determined by the material properties (conductivity
σ and dielectric constant ε and the relative thickness of
the two phases. For microcrystalline electroceramics,
with thin and highly resistive grain boundaries, the S-
BLM is quite appropriate, for example, in low-purity
ionic conductors with a continuous glassy grain bound-
ary phase [12].

To extend the BLM to the nanoscale regime, where
the grain boundaries and grain cores become compa-
rable in size, the side-wall contributions must be in-
corporated. Näfe [13] developed a series/parallel BLM
(SP-BLM) by connecting the central grain core/grain
boundary serial path in parallel with the side-wall grain
boundary path. The corresponding equivalent circuit is
shown in Fig. 2(b). We recently applied the SP-BLM
to the analysis of the impedance/dielectric response of
nanocrystalline ceria [14]. To allow for different elec-
trical conductivities perpendicular vs. parallel to the
grain boundary, Maier and coworkers [15, 16] devel-
oped a modified form of the SP-BLM which we refer
to as the SP′-BLM, whose equivalent circuit model is
shown in Fig. 2(c).

It is anticipated that the accuracy of these brick-
layer derived models decreases as the grain size ap-
proaches the nanograin regime. In such a regime the
grain boundary regions (due to impurity segregation
and associated depletion layers) can represent a signif-
icant volume fraction of the overall microstructure. It is
also anticipated that the grain morphology will change
as the grain size is reduced. Recently, Lubomirsky and
co-workers [17] investigated the influence of geome-
try on space-charge effects in nanocrystalline ceram-
ics. They found that for small grain sizes the charge
carrier distribution is inhomogeneous along the grain
boundary. In this work such effects are neglected. The
microstructure is divided into two regions, homoge-
neous grain cores surrounded by homogeneous grain
boundaries.

In the SP-BLM, current is confined to flow either
through the central core (series) path or the outer (par-
allel) path. Figure 3 compares the DC current distribu-
tion (in the shaded Y-Z plane of the inset diagram) for
current flow parallel to the direction of the applied field
(Z -direction) in the SP-BLM, Fig. 3(a) vs. the more re-
alistic nested-cube model (NCM), Fig. 3(b), which will
be discussed in detail in the following section. The grain
core-to-grain boundary conductivity ratio (σgc/σgb) was
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Fig. 3. Current distribution in a direction parallel to the applied elec-
tric field for a grain core to grain boundary conductivity ratio of 10,
(a) SP-BLM, (b) actual current distribution (NCM). The grain core
volume fraction was set at 0.31.

set at 10, and the grain core volume fraction (φ) was
0.31, corresponding to D/d (grain size divided by grain
boundary width) of 3.09. As shown in Fig. 3(b), the
current distribution for the NCM is more complicated
than for the SP-BLM, with considerable current flow
from the side grain boundaries toward the higher con-
ductivity grain core. This also results in a significant
decrease in the overall “composite” conductivity, as
will be shown.

Motivated by the problems associated with
boundary-layer models, effective medium theory
(EMT) has also been used to describe the complex
impedance/dielectric response of polycrystalline elec-
troceramics. Effective medium models obviate the
problems associated with restricted current paths by
taking into account actual current distributions in het-
erogeneous media. Maxwell [18], used the idea of an
effective medium to calculate the effective DC con-
ductivity, σtot, of a two-phase composite consisting of
isotropic spheres embedded randomly in a homoge-
neous matrix.

σtot = σ1

{
2σ1 + σ2 − 2φ(σ1 − σ2)

2σ1 + σ2 + φ(σ1 − σ2)

}
(1)

where σ2 is the conductivity of the dispersed spheres,
σ1 is the conductivity of the matrix, and φ is the volume
fraction of spheres. Equation (1) assumes that neigh-
boring spheres do not interact and is correct only to first
order in volume fraction (φ). Beyond the dilute limit,
mutual interactions between neighboring spheres be-
come increasingly significant.

Wagner [19] later showed Eq. (1) to be valid for the
complex conductivity, σ ∗ = σDC + iωε. A Maxwell-
Wagner (MW) medium can be visualized as built up
from a space-filling array of coated spheres as in Fig. 4,
with each sphere surrounded by a material contain-

Fig. 4. Schematic of the Maxwell-Wagner (MW-HS) microstructural
model.

ing smaller identical spheres having the mean or ef-
fective property value of the medium. As pointed out
by McLachlan et al. [14], the MW model is equiva-
lent to the upper and lower bounds for conductivity of
an isotropic two-phase mixture presented by Hashin-
Shtrikman [20] and the well-known Clausius-Mossoti
equation for dielectrics. We henceforth refer to this
model as the MW-HS model.

In the low-grain boundary volume-fraction limit
(thin grain boundaries), it was shown that the
impedance/dielectric response of a MW-HS medium
becomes indistinguishable from the brick-layer models
[21]. Thin coatings, whether insulating or conductive
relative to the cores, behave identically regardless of
the grain morphology (i.e., spheres vs. cubic “bricks”).
Furthermore, finite element analyses on “real” 2-D mi-
crostructures agreed well with BLM predictions unless
grain shape became highly distorted, or a bimodal dis-
tribution of grain sizes was present [22, 23]. This means
that simplified morphologies, whether spherical (i.e.,
the various EMT models) or cubic (e.g., the nested-
cube model below), stand a very good chance of accu-
rately describing the impedance/dielectric response of
electroceramics as long as the grain structure remains
reasonably monosized and equiaxed.

The present work describes the development of a
3D composite model capable of describing the AC
electrical response of polycrystalline ceramics over
the entire range of grain core volume fractions, from
0 (nanoscale) to 1 (microscale). One model pertinent
to the present work is that of Zuzovsky and Brenner
[24]. The Zuzovsky-Brenner Model (ZBM) consists
of a continuous isotropic matrix phase in which is
embedded a spatially periodic array of second phase
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Fig. 5. Unit cells of the Zuzovsky-Brenner model (ZBM), with spher-
ical second phase particles (grain cores) on a simple cubic lattice and
(b) the nested-cube model (NCM), with cubic second phase particles
(grain cores) on a simple cubic lattice.

spherical particles. The second phase can be arranged
on three types of cubic lattices—face-centered cubic,
body-centered cubic, and simple cubic, the unit cell of
which is shown in Fig. 5(a). This model is perhaps the
most representative of the situation in nanoceramics
with relatively thick grain boundary layers; grain core
morphology will most likely not retain overall grain
shape due to smearing/rounding of boundary layers
(e.g., space charge regions). The problem with the ZBM
is that a percolation threshold (grain core-to-grain core
contact) is reached at a grain core volume fraction of
0.52 for a simple cubic lattice.

The development of an analogous nested-cube
model (NCM) is presented in this work, the unit cell of
which is shown in Fig. 5(b). The NCM is a generaliza-
tion of the BLM with its cubic morphology. However, it
also considers the actual current distribution within the
microstructure. It does not have a percolation threshold
and is capable of describing the impedance/dielectric
behavior for cubic grains over the entire range of grain
core fractions. At low grain core volume fractions, it
is anticipated that the NCM will differ somewhat from
the MW-HS and ZBM behavior because of the differ-
ence in the basic shape of the grain core. This will be
discussed in detail in the second paper. At large grain
core volume fractions, however, the NCM results are
expected to approach those of the boundary-layer mod-
els. When the grain boundaries are thin, the NCM and
the brick-layer models should be microstructurally and
electrically indistinguishable.

2. Details of the Numerical Model

The NCM is not tractable analytically. Therefore, the
complex conductivity has to be solved numerically.

A FORTRAN-77 finite difference numerical program,
named ac3d.f, was modified to perform pixel-based
computer calculations at finite frequencies [25, 26].
The program was originally designed to compute the
electrical properties of random materials whose mi-
crostructure can be represented by a 3-D digital image.
It is assumed that each pixel of the image can be treated
as a homogeneous phase of known admittance, the ad-
mittance being modeled by a parallel (RC) circuit. In
the present work the computer program was used to
simulate a non-random but analytically intractable ge-
ometry. To simulate the NCM, pixels were assigned to
either the grain core or the grain boundary. A diago-
nalized complex conductivity was assigned to the two
phases. A system size ranging from 203 to 803 pix-
els was employed to represent the 3-D structure of the
NCM. In the computation process, each pixel has six
orthogonal (RC) circuits extending from its center to
the boundaries of the pixel. Neighboring pixels were
connected by joining the two bonds together produc-
ing a three-dimensional electrical network with a finite
difference node at the center of each pixel. A conjugate
gradient method was then used to solve Laplace’s equa-
tion at each frequency to give the complex conductivity
of the microstructure. Real and imaginary conductiv-
ities were then converted to impedance and modulus
quantities using standard equations.

To generate the periodic simple cubic lattice of the
NCM, it was necessary to add a shell of imaginary
states around the central grain and grain boundaries to
maintain periodic boundary conditions [25, 26]. For a
given grain core volume fraction, the system size was
varied to assess the effect of spatial resolution [27]. A
plot of conductivity versus 1/N (where N is the number
of pixels) was extrapolated to give the conductivity at
1/N → 0. The computational uncertainty associated
with the NCM, due to the use of the 1/N extrapola-
tion is less than one percent, which is very small. The
program was able to compute the voltage at each pixel
allowing the calculation of all the local currents within
the microstructure as well as the total current within
the sample.

Analytical equations exist for the resis-
tance/conductance of the other models considered,
which could therefore be evaluated in terms of
complex conductivities. The same standard equations
were employed in each case to obtain to impedance
and modulus formats. Equations for impedance
and modulus formats are given in the Appendix.
We also considered Bode plots (log-log plots of
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real and imaginary impedance or capacitance vs.
frequency).

3. Results and Discussion

The NCM was initially used to study the two extremes
of low grain core volume fraction and very high grain
core volume fraction. In the first case, due to widely dis-
persed grain cores in a continuous grain boundary ma-
trix, close agreement with the effective medium models
(MW-HS, ZBM) is anticipated. In the second case, due
to thin grain boundary layers, it is reasonable to expect
good agreement with the brick-layer models (S-BLM,
SP-BLM).

Figure 6(a) shows an impedance or Nyquist plot
(Z -plane) and Fig. 6(b) a modulus (M-plane) plot for
NCM, ZBM, and MW-HS model results, for a low grain
core volume fraction, φ = 0.048, corresponding to
D/d (grain size divided by grain boundary width) of
1.57. The ratio of grain-core-to-grain-boundary prop-
erties were set at (σgc/σgb) = 10 and (εgc/εgb) = 0.1.
In the low grain core volume fraction limit (thick
grain boundaries), there is good agreement between
the ZBM, the NCM and the MW-HS model; they all
converge to the exact impedance/dielectric response of
the MW-HS model in the dilute limit.

In the high grain core volume fraction limit (thin
grain boundaries), there is good agreement between the
NCM and the brick-layer models. This is illustrated in
Fig. 7(a) (Nyquist plot) and 7(b) (Modulus plot), where

Fig. 6. Simulated (a) impedance and (b) modulus response for various models assuming σgc/σgb = 10 and εgc/εgb = 0.1 and a grain core
volume fraction of 0.048, with log(frequency) markers as shown.

NCM and SP-BLM results are virtually indistinguish-
able. For these simulations, the grain core-to-grain
boundary conductivity ratio was set at (σgc/σgb) = 10,
and their dielectric constants were assumed to be iden-
tical (εgc = εgb). The grain core volume fraction was
φ = 0.927, corresponding to D/d (grain size divided
by grain boundary width) of 40. Again, there is excel-
lent agreement with the MW-HS model.

Significant differences between the NCM and the
BLM’s occur at intermediate grain core volume frac-
tions. Figures 8(a) and (b) show Z -plane and M-
plane plots, respectively, for a conductivity ratio of 10
(σgc/σgb) and a dielectric constant ratio of 1 (εgb = εgc).
The grain core volume fraction was set at 0.385. This
corresponds to D/d (grain size divided by grain bound-
ary width) of approximately 3.7. There is reasonable
agreement between the NCM and the MW-HS pre-
dictions; however, the SP-BLM results are noticeably
shifted in both Nyquist and Modulus plots. For exam-
ple, from Fig. 8(a) the DC resistance determined from
the NCM and MW-HS agree to within 3% whereas the
SP-BLM overestimates the resistance by 10%. This is
due to the unrealistic current flow in the SP-BLM, i.e.,
restricted to central (serial) or outer (parallel) paths of
the SP-BLM (see Fig. 1). In contrast, both the NCM and
the MW-HS effective medium model allow for more
realistic current distributions.

To test the general validity of the various models, we
calculated the DC conductivity vs. grain core volume
fraction over the entire range of values (0 < φ < 1)
for conductivity ratios of σgc/σgb = 10 (conductive



288 Kidner et al.

Fig. 7. Simulated (a) impedance and (b) modulus response for various models assuming σgc/σgb = 10 and εgc/εgb = 1 and a grain core volume
fraction of 0.927, with log(frequency) markers as shown.

Fig. 8. Simulated (a) impedance and (b) modulus response for various models assuming σgc/σgb = 10 and εgc/εgb = 1 and a grain core volume
fraction of 0.385, with log(frequency) markers as shown.

grain cores) and σgc/σgb = 0.1 (resistive grain cores).
It should be stressed that the MW-HS model represents
the upper and lower limits for isotropic two-phase com-
posites. Whenever model predictions fall outside the
region bounded by the two MW-HS lines, such pre-
dictions are invalid (not physically reasonable). Fig-
ure 9(a) compares the S-BLM and ZBM with the MW-
HS model. The ZBM is in good agreement with the
MW-HS model for all grain core fractions up to its
percolation threshold (φ = 0.52), as expected for the
conductivity ratios of σgc/σgb = 10 and σgc/σgb = 0.1.
Beyond the percolation threshold, the ZBM is no longer

valid. The S-BLM is in good agreement with the MW-
HS at high grain core fractions, as anticipated, but de-
viates markedly at small grain core fractions. This is
due to ignoring side-wall contributions (see Fig. 1) and
the correspondingly unrealistic current distribution.

Figure 9(b) shows SP-BLM predictions vs. the MW-
HS model as a function of grain core volume fraction.
In the thin grain boundary limit, there is good agree-
ment between the two models. At intermediate grain
core volume fractions, however, there are noticeable
differences between the two models. As was pointed
out by McLachlan et al. [21], the SP-BLM results
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Fig. 9. DC conductivity bounds for various models assuming σgc/σgb = 10 for the lower bound and σgb/σgc = 10 for the upper bound. In (a)
H-represents σgc/σgb = 10 and L-σgb/σgc = 10.

(conductive grain cores) tend to lie outside the allowed
range for isotropic two-phase composites, and are phys-
ically unrealistic.

In contrast to the other models, the NCM is in close
agreement with the MW-HS model over the entire
range of grain core volume fractions, for both conduc-
tive and resistive grain cores. This is seen in Fig. 9(c).
Furthermore, at all volume fractions, the NCM results
consistently fall within the allowed (physically rea-
sonable) range bounded by MW-HS upper and lower
curves.

In summary, the nested cube model has the follow-
ing characteristics:
(1) The NCM closely matches brick-layer model pre-

dictions (S-BLM, SP-BLM) at large grain core vol-
ume fractions (thin grain boundaries).

(2) The NCM approaches effective medium model pre-
dictions (e.g., ZBM) at small grain core volume
fractions (thick grain boundaries).

(3) The NCM results lie within the allowed MW-HS
upper and lower bounds over the entire range of
grain core volume fractions.
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(4) The NCM closely follows MW-HS behavior over
the entire range of grain core volume fractions.

The effectiveness of the NCM lies in its ability to
describe two-phase composite behavior over the en-
tire range of volume fractions. There is no percolation
threshold (as for the ZBM) and actual current distri-
butions are taken into account (vis-à-vis the S-BLM
and SP-BLM). However, the NCM has two potential
drawbacks. First, it is computationally intensive. Sec-
ond, it is certainly not an accurate representation of
actual electroceramic microstructure. This may not be
a problem at large grain core volume fractions (thin
grain boundaries), as argued above, but shape effects
must be considered at other grain core volume frac-
tions (e.g., cubes vs. spheres vs. dodecahedra). For very
small grain core volume fractions it is unlikely that the
grain core and grain boundary regions are homoge-
neous, the transition region over which the electrical
properties change is likely to be significant and has not
been considered in the above analysis.

In Part 2 we consider grain core shape effects
on electrocomposite behavior and further explore the
close agreement between the NCM and the MW-HS
effective-medium model. We also consider a wider
range of electrical properties (e.g., conductivity). For
practical purposes, we develop a closed-form solution
for deriving component electrical properties (grain core
vs. grain boundary) from experimental impedance data.

4. Conclusions

A pixel-based finite-difference “nested cube model”
was developed to investigate the validity of exist-
ing two-phase electrocomposite models for polycrys-
talline ceramics. The NCM is capable of describing the
impedance/dielectric behavior of electroceramics over
the entire range of grain core volume fractions, from the
nanocrystalline regime (where grain cores are small) to
the microcrystalline regime (where grain boundaries
are thin). It agrees well with effective medium theo-
ries in the small grain core limit (e.g., the Zuzovsky-
Brenner model, ZBM) and with grain boundary-layer
models in the large grain core limit (e.g., the series and
series/parallel brick-layer models, S-BLM, SP-BLM).
As opposed to the ZBM, which exhibits a percolation
threshold at grain core volume fraction φ = 0.52, there
is no percolation threshold for the NCM. In contradis-
tinction to the S-BLM and SP-BLM, which exhibit
physically unreasonable conductivities at intermedi-

ate grain core fractions (with values lying outside the
Hashin-Shtrikman bounds), NCM values fall within the
MW-HS bounds at all grain core volume fractions.

Part 2 of this series explores the close agreement be-
tween the NCM and MW-HS effective medium theory
over the entire range of grain core volume fractions, and
develops a closed-form equation for extracting compo-
nent electrical properties from experimental impedance
data.

Appendix

The complex conductivity σ ∗ obtained as a function of
angular frequency (ω) and grain core volume fraction
(φ) was converted to the impedance and modulus using
the following equations.

Zmr = G F
(
σmr

/(
σ 2

mr + σ 2
mi

))
(A.1)

Zmi = −G F
(
σmi

/(
σ 2

mr + σ 2
mi

))
(A.2)

Mmr = −ωZmi (A.3)

Mmi = ωZmr (A.4)

Here, GF is a geometric factor used to convert from
conductivity to conductance.
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